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For a classical fluid of hard spheres and hard disks exact expressions for all 
densities and wave vectors are derived for the coefficients of t" in the short-time 
expansion of the incoherent intermediate scattering function (n = 0, 1 , . . . ,  4) 
and the velocity correlation function (n = 0, 1,2). Similarly, we obtain the 
coefficient of the leading term in the short-time behavior of the cumulants of the 
displacements. Furthermore, S(k, ~o) has a high-frequency tail ~w -4, character- 
istic for the hard-sphere fluid, which leads to a modification of the standard sum 
rules. We present estimates for the frequency range, in which this tail may be 
observed in neutron scattering off noble gases. The results are also compared 
with Enskog's theory and molecular dynamics calculations. 

KEY WORDS: Incoherent scattering function; velocity correlation function; 
cumulants of displacement; hard-sphere fluid; short-time expansions. 

1. I N T R O D U C T I O N  

T h e  sho r t - t ime  b e h a v i o r  of  sca t t e r ing  f u n c t i o n s  is one  of  the few d y n a m i c a l  

p rope r t i e s  of  c lass ica l  sys tems  in e q u i l i b r i u m  which  c a n  be  c a l c u l a t e d  

exact ly .  Th is  b e h a v i o r  has  b e e n  s tud ied  ex tens ive ly  for  par t ic les  i n t e r a c t i n g  

t h r o u g h  a L e n n a r d - J o n e s  type  of  po ten t ia l .  ~-4) T h e  theore t i ca l  resul ts  

ag ree  wi th  e x p e r i m e n t s  ~5 8~ a n d  a re  f r e q u e n t l y  used  to fit  p a r a m e t e r s  in 

p h e n o m e n o l o g i c a l  theor ies  tha t  w a n t  to desc r ibe  the  sca t t e r ing  f u n c t i o n s  

for  all  t i m e s )  
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The methods employed to determine this short-time behavior cannot 
be applied straightforwardly to systems interacting through hard core 
potentials.( 10-21) 

The aim of this paper is to find the behavior of several types of 
correlation functions in hard-sphere systems at short times. A partial 
summary of the results has been published before. (22'23) 

We consider N hard spheres in equilibrium contained in a volume V 
and obeying the laws of classical mechanics. The temperature T = 1/ks f l ,  
where k s is Boltzmann's constant, m is the mass of a particle, and o its 
diameter, the density n = N~ V, and d denotes the dimensionality of the 
system (d >/2). 

The subject of interest is, more specifically, the short-time behavior of 
the incoherent intermediate scattering function F(k, t ) ,  of the velocity 
correlation function C(t), and of the cumulants 3,n(t) of the displacement of 
a tagged hard sphere. Furthermore, we consider the large ~0 behavior of the 
incoherent scattering function S(k ,  ~). 

The incoherent intermediate scattering function is defined as 

F ( k , t ) =  ( e x p [ i k . r l ( O ) ] e x p [ - i k . r t ( t ) l ) o =  ( e x p [ - i k A x ( t ) l ) o  (1.1) 

and A~(t) is the x component of the displacement of particle 1, 

;0 ' Ax(t ) = x , ( t )  - x,(O) = dTvlx('c ) (1.2) 

where we have taken the 2 axis parallel to the vector k. The velocity 
correlation function is defined as 

C(t)  = ( ' l , ) l x l ) l x ( t ) )  0 (1.3) 

In these definitions the phase (ri(t), vi(t)) denotes the position and velocity 
of the ith particle at time t, when (ri,vi) is the initial value at t = 0. The 
wave number k determines the scattering angle. The equilibrium average 
( " " " )o = fdFDo(F ) . . .  is taken with the distribution function D0(F ) of 
the canonical ensemble, where I7 -- (rivlr2v 2 . . . r~vvN) , and the bulk limit is 
understood to be taken. 

The incoherent scattering function is defined as the Fourier transform 
of F(k ,  t), i.e., 

S(k'~~ ~g~ f;:dte-i~'F(k't)= • (1.4) 

where we have used that F(k,  t) is an even function of t, both for smooth as 
well as for hard-core interparticle potentials. For the latter case this will be 
shown in Section 2.2. As a result S(k ,  w) is even in w. The inverse relation 
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therefore reads 

F(k,t) = ;_+~do~cos~t S(k, oa) (1.5) 

An equilibrium time correlation function for a system in which the particles 
(i, j = 1, 2 . . . . .  N) are interacting through a smooth potential V(r,j) with 
rg = r~ - rj can be written as 

Cab(t ) = ( a(O)b( t) )o= (aetLb)o (1.6) 

where a and b are dynamical variables, and L is the Liouville operator, 

L = L 0 - ~ ~-~,0(~) (1.7) 
i < j  

with 

a (1.8a) Lo = ~ v/. 

1 3V(rij) ( 0 0 ) (1.8b) 
0 ( , y ) = m  ~r---~j " av, 0v; 

The streaming operator etC generates the trajectories in F space. 
For the special case of hard spheres the time evolution of a dynamical 

variable a(t) can be represented by pseudo streaming operators, which 
generate the trajectories of the phase point in F space. They are defined for 
forward and backward streaming in time as (24'25) 

exp( tL+)a ,  t > 0 (1.9) 
a(t)= e x p ( t L  )a, t < 0  

The pseudo-Liouville operators L_+ are given by 

L• = L 0_+ ~ ~ T• (O') (1.10) 
i < j  

with binary collision operators 

T+ (ij)= od-'fa~lvy �9 ~[0(-V-v~.~)8(r,j - o ~ ) [ b ~ ( 9 ) -  1] (1.11) 

Here O(x) is a unit step function; v,j = v i -  vj, and ~ = a/la] is a unit 
vector. The substitution operator ba(~) acts only on the velocities v i and vj, 
and replaces them by the velocities vl, v~ after the binary collision, 

b ~ ( i j ) u  i = V~ = u - -  O ( O ' '  u 
(1.12) 

b~(/j)v; = v~ = v; + ,~(~ �9 v/A 
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The operators exp(tL+ ) generate the physical trajectories in F space either 
in forward (t > 0) or backward (t < 0) direction, starting from physical 
initial positions, in which hard spheres are not overlapping. These stream- 
ing operators also generate unphysieal trajectories for unphysical, i.e., 
overlapping, initial conditions. However, Eq. (1.9) is only needed inside the 
averages (1.6). In fact, the correlation functions of interest are 

F(k ,  t) = fdr D0(F)exp(ik �9 rl) exp(tL_~ ) exp( - ik,  rl) 

--~ (exp(ik .r ,)  exp(tL_+ ) exp ( -  ik.  rl))o (1.13) 

= fdr Do(F)vlxexp(tL+ )v l x=  (v1~exp(tL+ - )vlx)o C(t)  

in which the unphysical overlapping initial configurations have a vanishing 
weight D0(F ) so that only physical trajectories contribute to the averages. In 
averages ( �9 . �9 )0 containing the operators L_~, as in Eq. (1.13), the weight 
function D O is always understood to be to the left of all L_+ operators. 

After the introduction of the relevant quantities we give the plan of 
this paper. Our method for short-time expansions is described in Section 2, 
and we rederive from our method the known results for F(k,  t) and C(t), 
which involve one binary collision. In Section 3 we consider the next-order 
correction terms in the short-time expansions. They involve either two 
uncorrelated binary collisions, or three correlated binary collisions (recolli- 
sion sequence). In order to determine which dynamical events are involved 
in the coefficient of t n, we discuss in Section 4 short-time estimates for 
general collision sequences. In Section 5 we discuss the high-frequency tail 
of the incoherent scattering function S(k,~o), characteristic for a hard- 
sphere fluid, and its implication for the sum rules. In that section we further 
consider the transition from smooth to hard-sphere potentials, which yields 
some conditions on the applicability of hard-sphere models to real fluids. 

In Section 6 we obtain the short-time behavior of the cumulants ~,n(t) 
of the displacement of a tagged hard sphere. In Section 7 the exact results 
for F(k, t ) ,  C(t), and -/,(t) are compared with the Enskog theory for a 
hard-sphere fluid, and with available molecular dynamics data. We con- 
clude with a discussion in Section 8. 

All considerations in this paper refer to hard-sphere interactions, and 
whenever we refer to smooth interactions we state it explicitly. 

2. METHOD AND KNOWN RESULTS 

2.1. DescripUon of the Method 

The short-time expansion of correlation functions for a system with 
smooth interactions follows directly from Eq. (1.6) by writing e tc as a 
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Taylor series, 

Cab(t ) = {ab)o + t(aLb)o + (1/2)tZ(aL2b)o + . .  �9 (2.1) 

where the coefficient (aLnb)o is the nth derivative of Cab(t ) at t = 0. 
Our method for obtaining short-time expansions in hard-sphere sys- 

tems resembles very closely the above method for smooth potentials, when 
the usual Liouville operator (1.7) is replaced by the pseudo Liouville 
operator (1.10), i.e., we calculate derivatives of Cab(t) at t = 0, and obtain 
the short-time behavior of Cab(t ) as a Taylor series, 

n--1 lk  
Cab(t) = Z ~(. C~(~)(O) + R,(t)  (2.2) 

k=O 

with a remainder 

1 footd'c(t- T)"-'C~;)(T) (2.3) R , ( t ) -  (n 1)! 

and C~({ ~ denotes the nth derivative. We continue this procedure till we 
encounter a derivative, say, C~[,)(t), which is not well defined at t = 0, but is 
still well defined for t > 0 or t < 0; then we determine the short-time 
behavior of C~({)(t) (t > 0, or t < 0), from which we deduce R,(t) at short 
times using (2.3) by taking the limit t ~ 0  + or 0 - .  It depends on the 
functions considered which derivatives become ill defined at t = 0. For 
F(k,t)  it is the fourth derivative and for C(t) the second one. These 
derivatives will be considered in the next section. 

Our method differs from the approach of Sears (1~) and Kleban (16) in 
which first the short-time expansion (2.1) is considered for smooth poten- 
tials and next the hard-sphere limit is taken. In our approach the order of 
these two limiting operations is reversed. Essentially the same procedure is 
followed in Refs. 11, 14, 15, and 18. 

2.2. Useful Properties of F(k,t) and C(t) 

In order to obtain the short-time expansions of F(k,t)  and C(t) for 
hard spheres we discuss three relations, which will simplify our consider- 
ations: 

(i) F and C are even functions of time, i.e., 

F(k, t) = F(k,  - t) = F(k, Itl) 
(2.4) 

c(t) = c ( - t ) =  c([tl) 

This can be seen from Eq. (1.13) by changing the variables v i into - v  i for 
all i =  1,2 . . . . .  N, so that for t < 0 the operator e 'L = e -Jtlc changes 
under this substitution into e I'lL+, whereas the remaining parts of the 
integrands are left unchanged. Hence, we restrict ourselves to t > 0. 
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(ii) For any pair of dynamical variables a and b the Hermitian adjoint 
of L+ with respect to the inner product (a, b) = (ab)o is given by 

(aL+ b)o = - ~bL_ a)o (2.5) 

where the weight function Do(r) is to the left of all operators inside the 
brackets. For a proof of (2.5) we need two properties of pseudo Liouville 
operators, derived in Ref. 24, i.e., 

fd~'Doae'L+b=fdFbe-'7"-aDo=fdFDobe'tl"-a (2.6) 

In the first equality we used that the Hermitian adjoint of L+ with respect 
to the inner product (a, b) = fdF ab is ( - / ~  ), of which the explicit form is 
not needed here. In the second equality we used the commutation relation 
exp( -  tL_ )D o = D0exp(-  t L  ). The time derivative of (2.6) at t = 0 yields 
(2.5). 

(iii) The functions F(k, t) and C(t) in (1.13) are related by 

C(t) = - lim F"(k, t ) /k  2 (2.7) 
k-~O 

since we have from (1.10) and (2.5) 

F' (k , t )=  - ( [ L  e x p ( / k . r 0 ] e x p ( t L + ) L + e x p ( - / k . r 0 )  ~ 

= - k2(v, �9 exp(ik �9 rl) exp(tL+ )v, . /~ exp( - ik.  r,))0 (2.8) 

where the primes indicate partial derivatives with respect to t and/~ = k /k .  

2.3. Contributions from at Most One Collision 

In the remaining part of this section we rederive from our method the 
coefficients in the short-time expansion of F(k,t) and C(t), which have 
been obtained in the literature. (1~ We start with F(k, t) in (1.13) where 

F(k, 0) = 1 (2.9) 

F'(k,O) = (exp(ik �9 r l)L+ e x p ( -  ik.  rl))o = 0 (2.10) 

F"(k,O) = - k 2 ( ( v ,  �9 = -kZ/( f lm)  (2.11) 

F'"(K, 0) = - k2(v, �9 exp(ik �9 rl)L+ v, .  /~ exp( - ik.  r,))0 

= - k2(N - 1)(v 1 �9 (12)v, �9 (2.12) 

The first three expressions do not depend on the interparticle potential and, 
therefore, hold for smooth potentials as well. In order to derive these results 
Eq. (1.10) is needed; for the last two we have also used Eq. (2.8). The 
N-particle average in (2.12) is taken over a function of two particles only. 
Therefore, it can be expressed in terms of the static pair correlation 
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function. In general, the static correlation functions are defined as 

n2g(r12)= N ( N -  1)f... fdr3.., arNdv, ...dVNDo(F) 

n3g(r, ,r2,r3)  = N ( N -  I ) ( N  - 2 ) f  �9 �9 �9 fd,4.., drNdv,.., d V u  D0(I') 

(2.13) 

In fact, in this and all subsequent expressions the thermodynamic limit is 
understood. On account of these definitions Eq. (2.12) becomes 

F" '(k,  0) = - k2nfdrlzg(r,2)((vlxT+ (12)Vlx)) (2.14) 

Since the right-hand side of (2.12) does not depend on the direction of the 
A A A A A 

unit vector k, it may be averaged over all directions of k, using fdkk~k~ 
=~2a6~,/d, where ~2 a =2~ra/Z/F(d/2) is the surface area of a d- 
dimensional unit sphere. Each pair of brackets ( �9 �9 �9 ) in (2.14) stands for a 
one-particle velocity average, i.e., 

( . . . )  = f dv,~o(V,). .. (2.15) 

with a Maxwellian weight, i.e., 

q~o(V)=(-~ )a/2exp[-(1/2)flmv 2] (2.16) 

Introducing X = g(o), which is the static correlation function of two hard 
spheres at contact, and using (1.10) and (1. I1), we reduce Eq. (2.14) further 
to 

F'"(k;O)= k2n~176 0( -v ,2  �9 8)(v,2 �9 8)2v, �9 8 ) )  

= 2k2/(dfl mtE) (2.17) 

In evaluating the integral in (2.17) it xs convenient to introduce center-of- 
mass and relative velocity variables. 

We have further introduced the Enskog mean free time between 
collisions t E and the mean collision frequency to I at low density as 

t E = to~ X 
noa-l~2a (2.18) 

to 1 ~" n o d - 1 ; d S  ( (u 8 0 ( V 1 2 - 8 ) ) )  - -  

(qr/Sm) 1/2 

Collecting results from (2.9)-(2.12) and (2.17), the Taylor series (2.2) yields 
for the incoherent scattering function at short times (t > 0) 

kZt 2 k2t 3 
r(k , t )  = 1 - 2fl----m + 3dflmt~ + O(t4) (2.19) 
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and by virtue of Eq. (2.7) for the velocity correlation function 

C(t)--- 1 - -~e + O(t2) (2.20) 

In the following section these results will be extended to the next order in 
time. 

3. CONTRIBUTIONS INVOLVING MORE COLLISIONS 

3.1. Correlation Functions for the Fourth Derivative of F(k,t) 

In this section we calculate the next approximation to F(k, t) and C(t), 
which will involve the static triplet correlation function. We start by 
considering the fourth derivative F'" (k ,  t) for t > 0, which reads 

F""(k,  t) = k2( [L_  v I ./~ exp(ik �9 r l )  ] exp(tL+ )L+ v t �9 exp( - ik .  r 0 )o 

(3.1) 
as follows from Eq. (2.8) and (2.5). It does not exist for t --- 0, since it will 
contain terms of the form ( ( T  (12)v,./~)(T+(12)v,-/~))0 where each T 
operator, defined in Eq. (1.11), contains a factor 8 ([r12 [ - o). However, with 
any finite streaming e rE+ between the two T operators, the expression is 
well defined and approaches a finite Bruiting value for t ~ 0 + ,  as will be 
shown in this section. The limiting behavior F'"'(k,O + ) is all that is 
required to calculate the remainder R4(t ) in (2.3) for small times up to O(t 4) 
included. 

In view of the fact that both L+ and L in Eq. (1.10) consist of two 
terms, we divide F'" '(k, t) into 

F'" ' (k,  t) = A (t) + B(t)  + F(t) + A(t) (3.2) 

with 

A(t)  = k4((vt �9 l~ )2exp( ik ' rOexp( tL+)(v , ' /~ )Zexp( - i k . r l ) )o  (3.3) 

= ik3((v, . /~)2 exp(ik,  rl)exp(tL + ) ~  T+ ( l j )v , '  /~ e x p ( - i k  .r ,)  1 B(t) 
\ j ~ o 

(3.4) 

F ( t ) =  ik3([ j~. T_ ( I j )v  l ' l ~ e x p ( i k ' r , ) ] e x p ( t L + ) ( v , ' / ~ ) 2 e x p ( - i k ' r l ) ) o  

(3.5) 

A ( t ) = - k 2 ( [ ~ T _ ( l j ) v l . l ~ e x p ( i k . r O ]  
J 

• exp(tL+ ) ~  T+ ( l l )v ,  �9 e x p ( - / k  �9 r,) / (3.6) 
l / o 
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As is clear upon comparison of (3.3)-(3.5) with (3.1) the derivatives A"(t), 
B'(t), and F'(t) have the same structure as A(t), which, as will be shown 
below, will approach a finite value for t ~ 0 + .  Hence A (t) = A (0) + O(t), 
and similarly for B(t)  and F(t), since the first derivative of these quantities 
exists at t - 0. Now, Eq. (3.3) yields 

.4(0)  k4((u A 4 3k4 = "k) ) 0 -  (3.7) 
(tim) 2 

Next, choosing/~ parallel to the x axis, we find 

J 0 

Inserting the definition of the T operator yields 

B(O)=ik3nxfd88x((v~x(v,2.8)20(-v,2.8))) (3.9) 

The velocity average << �9 �9 �9 >> in (3.9) has the structure (aS 2 + b), so 
that B(0) vanishes after averaging over all 8. Hence for small times 

B(t)  = F(t) = O(t)  (3.10) 

The arguments leading to Eq. (3.10) for F(t) are completely analogous to 
those above. 

3.2. T w o - C o l l i s i o n  Cont r ibu t ion  Aa(t ) 

Next we consider A(t) in (3.6), which we divide into the contributions 
from equal pairs, Ae(t), and from different pairs, Aa(t ), i.e., 

~x(t) = ~ ( t )  + Ae(t ) 
with 

(3.ll) 

Ad(t ) = - -kZ(N - 1)(N - 2 ) ( ( T  (12)v t �9 �9 r,)) 

• exp(tL+ )T+ (13)v, �9 e x p ( -  ik �9 rl))0 (3.12a) 

2xe(t ) = - kZ(N - 1)( [ T_ (12)v t �9 exp(ik . r , ) ]  

x exp(tL+ )T+ (12)v, �9 ~ e x p ( - &  �9 r , ))o (3.12b) 

A d will be considered in this section and A e in the next one. 
We first observe that Aa(0 ) exists. In the next section we will show that 

higher-order contributions are at least of O(t) for small t. Hence, using Eq. 
(2.13) and (1.11) we obtain 

Ad(O ) = - - k Z n 2 f d r , z f d r , 3 g ( r , , r 2 , r 3 ) ( ( ( ( T  (12)v 1 �9 (13)v, . /~) ) } 

( ~ m )  2 do 1 do 2 g3 (o | "  82)(81 �9 k ) ( o  2 �9 k ) g l ( 8 1  �9 82) (3.13) 
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where we have introduced the static triplet function for three spheres in 
contact 

g3(61" 62) =-g(r,r- o 6 1 , r -  062) (3.14) 

It depends only on 61 . 62 = cos0 = x due to spatial isotropy of the equilib- 
rium state, and g3(x) vanishes for overlapping configurations where 1/2 
< x < 1. In addition we have defined 

A A ,~ A 2 Vt(a, .62) = ( tim)2( ( ( 0(Vl2. Ol)0(V31" O2)(V12 "Orl) (V31 '62) 2) ) ) (3.15) 

All velocity components orthogonal to the plane of 61 and 62 integrate 
trivially to unity. Hence, we can treat the velocity variables in (3.15) as 
two-dimensional vectors and the result, which does not depend on dimen- 
sionality, reads 

l ( 2 + x 2 ) c o s _ ,  x 3 X ( l _  1 ),/2 
V l ( X )  = ~ 2 '/7 4 x2 

l x 2  4x 1 ;3;_~_2) (3.16) = 1 +  5 - - -~-2Fl(-  1 , - ~ 

as is calculated explicitly in Appendix A, where also the Gaussian hyper- 
geometric function 2Fl(a,b; c; x) is defined. We can further evaluate Eq. 
(3.13) by averaging over all k, which allows us to replace (61 �9 k ) ( 6  2 �9 k )  by 
(81 �9 62)/d. The integrand in (3.13) depends then only on 61 �9 62 so that the 
61 integration may be carried out, resulting in 

Ad(0 ) -- ~ 'k2 (XVl(X)g3(X))ang (3.17) 
dfi m( tex) 2 

where t e was defined in Eq. (2.18) and ( . . .  }ang is an average over a 
d-dimensional solid angle, defined for an arbitrary function h(x) with 
x = 61 �9 6 2 as 

1 f d62h(61 �9 62) (3.18) <h(x)Lo  - 

The contribution (3.17) has been calculated previously by Resibois, (~9) and 
will be discussed in Section 8. 

3.3. Recol l is ion Contr ibut ion Ae(t) 

Next, we consider Ae(t ) which does not exist for t = 0, as explained in 
the beginning of this section. In order to evaluate it for short positive times 
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t we use the binary collision expansion (BCE), as given in Refs. 24 and 25: 

e,L+=etLow~_js t- tdtle! ")LOT+ (oOeqL~ 

+~_js163176176176 . . .  (3.19) 

where a, / 3 . . .  run over all pairs of particles. We may restrict ourselves to 
a 4=/3, due to the impossibility of two consecutive binary collisions between 
the same pair, i.e., ~2<25) 

T+ (a)e'L~ (a) = 0 (3.20) 

For the same reason the first term in the BCE, i.e., the free streaming term, 
e to~ gives a vanishing contribution to Ae(t ) in (3.12). For, [T_(12)vlx ] 
etL~ (12)vlx] vanishes, because the expression contains 6(081 + vl2 t - 
082) with Y12- 8 2 < 0 and v12.81 > 0, so that [o81 + Vlet - O6zl > 0. There- 
fore the first nonvanishing contribution to Ae(t ) comes from the second 

term in the BCE. Here T+ (a)etCoT+ (12)Vl �9  ik.  rl) ~ 0, provided 
the pair (c 0 contains either particle 1 or 2, since T0j)f(r  k, vk) = 0 if k ~ i or 
j and we obtain the so-called recollision term, 

AXe(t ) = --k2n2fdrl2fdrl3g(rl ,r2,r3)s T (12)v,. /~ exp(ik "rl) ] 

X e x p [ ( t -  t0L0]  [ T+ (13) + T+ (23)] 

Xexp(tlLo)T+(12)v , �9  ik.  r l ) ) )  } + O(t) (3.21) 

A recollision event is defined by a collision sequence (ij)(ik)(ij) where k =/=j 
and where (0") denotes a binary collision between the particles i and j .  The 
higher-order terms in the BCE contribute at most terms of O(t) for small t, 
as will be shown in the next section. Although the integral (3.21) looks 
formally of O(t) due to the appearance of one time integral, it will appear 
that the integrand contains a factor 6(t I - at) with 0 < a < 1, so that the t I 
integration yields a finite contribution as t ~ 0 +.  

In order to evaluate (3.21) we use the relation 

s [ T (12)c~(vl)exp(ik. rl) ] expI (t - tOL o J T+ (13) 

• exp(t,Lo)T + (12) B(vl) exp(ik �9 rl) 

= 02d-2fdSlfd82r 081)~(r13- 0-82)0(-81 "82) 0(v12. Ol)Vl2" 81 
[01" 021 

• [ ( b , , ( 1 2 )  - �9 81)1*,2 �9 8 , [  

• [(ba~(12 ) - 1)/3(v])] + O(t) (3.22) 
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which is valid for arbitrary functions a(v 0 and fl(v 0 as derived in Appen- 
dix B. Then, with the help of (3.14) and the equation [bal(12 ) -- 1]v I . k = 
- (81 �9 k)(vl2 �9 81) we obtain 

2k2n2o2 d -  2 
f a6, f  d62g (< .62)(6, . ;)2 ae(O + ) - (Bin)2 

0 ( -  61 " 6:) 
X ]61. 621 V2(61 "62) (3.23) 

Here we have introduced 

V2(61 "62)~ (/~m)2/<<0(u �9 61)0(-v1, 2 �9 61)(vi2' 61)2(u o61)2>>> 

(3.24) 

where 

Vl'2 -~- ba2(13)v12 = v12 - 62(62 'Vl3) (3.25) 

and for x < 0 

V2(x ) ~- V , (2 -  X 2) 

-- 2 (6 - -4x2+x4)s in - lX  ~ ( 1 ) ~/2 ~- ~ +  ( 2 - x  2) 1 -  x 2 

-- 15r 8 x52Fl( 1 2 ' 2 '  2 ' 4 1 "  7 " X 2 )  (3.26) 

as shown in Appendix A. 
A factor 2 appears in front of (3.23), since the terms containing 

T+ (13) and T+ (23) in Eq. (3.21) are equal in the short-time limit. This can 
be seen by interchanging the labels of particles 1 and 2, using T(12)(v 1 + v2) 
= 0, and observing that exp(+ ik  - rl) does not contribute to Eq. (3.22). By 
averaging Eq. (3.23) over all k we may replace (31 -/~)2 by 1/d. Since the 
integrand depends only on d 1 �9 32, one can carry out the 61 integration with 
the result 

A e ( 0 + ) - - _ 2 ~ r k  2 ( O ( - x )  > 
dflm(teX) 2 x ra(x)g3(x) ang (3.27) 

where x = 61 �9 62 and t E is given in Eq. (2.18). 

3.4. Results for F(k,t) and C(t) 

From the previous results follows that F'"'(k, t) = A (0) + A(O + ) + 
0(t), so that the remainder (2.3) in the Taylor series (2.2) for F(k, t) at small 
positive t is given by 

t4 [A(0) + A(0 + ) ]  + O ( r  (3.28) R4( t ) = ~. 
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The results for ka(0 + ), me(0 "-]- ) and A(0 + ) = Aa(0 + ) + Ae( 0 --[- ) follow 
from (3.11), (3.17), and (3.27) and may be summarized by the equations 

k 2 4Tr g3( ) 
t~ Ae(O+ ) = tim d W R(x) ~ (3.29) 

4(0 + ) W(x) X- 
ang 

The average over the d-dimensional solid angle is defined in (3.18), the 
triplet correlation function for three spheres at contact g3(x) in (3.14), and 
the Enskog mean free time t e in (2.18). The function W(x) does not depend 
on dimensionality and is defined as 

W(x) = WE(x ) + W~(x) (3.30) 

with 

l xVl(X) = 3x2 ( 1 ) ./2 W E ( X )  ~- - -  a ~ 1 - -  - - X  2 - -  ~x (2 + x2)cos ' x__2 

x 2 ( l 1 . 3  x 2 ) - 81x(2+x  2)+-~r 2FI - 2 ' -  2 ' 2 ; - 4 -  (3.31) 

and 

0 ( - x )  
WR(x) -  2x V2(x) 

_ 3 ( 2 _ x 2 ) ( 1 _  1 )1/2 1 1 s in - ,X  2v 4 x2 - -  (6 - 4x 2 + X 4) X 

-- 4 x42Fl(1 1 . 7  x 2)  
15~r ~ , -~,  ~ ; -~- (3.32) 

Our final result for the short-time behavior of the incoherent scattering 
function F(k, t) follows from (2.19) and (3.28) to be 

k2t 2 k2lt] 3 k4t 4 rrk2t41W(x)g3(x) ) 
F(k,t) = 1 2.fl~ + 3dflmt~ + 8(/~m) 2 6dfl mt2 . a n g  

+ O(t 5) (3.33) 

The velocity correlation function C(t) can be deduced from (3.33) by 
means of (2.7), 

2It[ 2rrt___22 ( W(x)g3(x) ) 
tim C(t)= 1 - ~ + dt~ X z + O(t3) (3.34) 

a n g  

We note that terms containing odd powers of It] appear in the expansions 
(3.33) and (3.34) for F(k, t) and C(t). Such terms are absent for systems 
interacting through a smooth potential. 
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4. ESTIMATES FOR GENERAL COLLISION SEQUENCES 

4.1. General Rule 

In the previous section we have calculated the function Ae(t ) in (3.12b) 
for small times by using the binary collision expansion (3.19). We showed 
by explicit calculation that terms in the BCE which look formally of order t 
may contribute to order t o . The question therefore is: which terms in the 
BCE or equivalently, the dynamics of how many particles, will be involved 
in determining the coefficient of t k in the short-time expansion of a general 
correlation function Cob(t ) of the form (1.6)7 

From the work of Lanford, (26) specialized to the velocity correlation 
function as in Ref. 27, follows that the coefficient of t k involves at most the 
dynamics of (k + 1) particles. On the basis of qualitative arguments we 
want to extend Lanford's results to more general correlation functions, and 
make it more precise by specifying the dominant (k + 1)-particle collision 
sequences. In doing so we are able to argue that we have included in the 
previous sections all relevant contributions of O(t  4) and O(t 2) to F(k, t) 
and C(t), respectively. We restrict ourselves to equilibrium time correlation 
functions of the form 

Cob(t) = (aetL+b)o (4.1) 

where a and b are (sums of) functions of the velocities and positions of a 
few particles, such as Eqs. (3.3)-(3.6). Each function a and b may contain 
at most one operator T+ (a) with pair label % or a b, respectively. The total 
number of T+ operators in a and b is mob, SO that m,b=O, 1, or 2. 
Estimates for the relevant contributions to F(k, t) are obtained below, using 
Eq. (3.2) and using estimates for the functions (3.3)-(3.6) which are of the 
form (4.1). 

Substitution of the binary collision expansion (3.19) in Eq. (4.1) yields 
an infinite set of cluster functions 

Cob(t) = ~ ~,'  Cab(a,a2...  e%;t) (4.2) 
m ~ 0 0 t l  " " " O~m 

where the cluster functions represent the contribution from a collision 
sequence in T+ operators with pair labels c~tc~ 2 . . .  c~,~o In the summation 
over the ordered set { al ~ " �9 ' O~rn  } the pair label c~ i runs over all pairs in the 
system with the restrictions, that consecutive pairs ai%+~ are different [see 
Eq. (3.20)], and that the ordered set of T operators { cq ~2 . . .  C~m} is 
connected, i.e., each pair c~ i (i = 1,2 . . . .  , m) contains at least one particle, 
which occurs already among the pairs ( a i + l , . . . ,  %,) to its right or as 
argument of % in Eq. (4.1). The connectedness is a direct consequence of 
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the form (1.11) for the T operators, which makes T(/j)f(r~, vk) = 0 for k ~ i 
or j .  

For short times each contribution Cab(a~a2 . . .  ~m ;t) obeys the follow- 
ing rule: 

Cob(a,a2 . . . am, t ) = yt  m* m"~[l+ O(t)]  (4.3) 

The coefficient ~, depends on a and b, and the collision sequence 
{a la  2 . . .  %}; mob is the total number of T operators in a and b, and m* 
the total number of different pairs in the sequence { % a l a 2 . . .  am% }, 
including the pair labels possibly present in a and b; m is the total number 
of T operators and also the number of ordered time integrals involved in 
C a b ( O L l  . . . OLrn ; t ) .  

4.2. Impl icat ions 

Before discussing the justification of (4.3) we make a number of 
comments. 

(i) m* satisfies the inequalities 

m p -  1 < m* ~< m + m a b  (4.4) 

where mp is the number of different particles involved in the sequence 
{ % a ~ a 2 . . .  am%}; the lower bound represents the minimum number of 
connected pairs which can be constructed for mp particles; the upper bound 
is implied by the definition of m*. 

(ii) An exponent m* - mab = -- 1 in (4.3) can only occur for mab = 2 
and m * =  1, i.e., for the collision sequence ( % ) ( % ) =  (12)(12). It gives a 
vanishing contribution according to Eq. (3.20). Hence 

m* - mab >/ 0 (4.5) 

(iii) According to Eq. (4.4) the dominant short-time contribution of a 
cluster function with mp particles is O(tme--m"b--1). Therefore, in order to 
determine Aa(t ) and Ae(t ) in Eqs. (3.12) with mab = 2 correctly to O( t  ~ one 
needs at most three particles, and the collision sequences (12)(a 0 . . .  (am) 
(13) and (12 ) (a l ) . . .  (am)(12), respectively, with m* = mab = 2 different 
pairs. Since consecutive pairs must be different, only the sequences (12)(13), 
(12)(13)(12)(13), (12)(13)(12)(13)(12)(13), etc. are allowed in Ad(t ), of which 
the second and higher ones are dynamically impossible, as shown in the 
literature. (28) The first one, (12)(13), has been calculated in (3.13). On the 
basis of similar arguments one finds that only the collision sequences 
(12)(13)(12) and (12)(23)(12) contribute to Ae(0 + ), as calculated in Eqs. 
(3.21)-(3.23). In order to determine the remaining terms (3.3)-(3.5) cor- 
rectly to O( t  ~ the rule (4.3) yields for A (t) the values mob = 0 and m* = 0, 
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and for B(t) and F(t) the values m~b = 1 and  m* = 1, as calculated in Eqs. 
(3.7)-(3.9). 

(iv) The  rigorous bounds  for the velocity correlat ion funct ion C(t) 
given in Refs. 26 and 27 are consistent with the general rule (4.3). For  C(t) 
the quantit ies a and  b in (4.1) are equal to vlx so that  mo~ = 0 and therefore 
the exponent  m* - mab in (4.3) equals m*. In Lanford ' s  r igorous est imates 
rn* is replaced by the lower bound mp - 1 in (4.4), so that  the rule (4.3) gives 
estimates that  are sharper than Lanford 's .  However ,  we will not  give a 
rigorous derivat ion of (4.3) but  present  only some qualitative a rguments  in 
the next section. 

4.3. Outline of a Proof of Rule (4.3) 

We first consider the arguments  which lead to the rule (4.3) for the 
case mab = 0, i.e., when a and  b are smooth  functions of the phases [unlike 
the T operators  in Eqs. (3.4)-(3.6)]. An est imate for Cab(c~ t . . .  am, t) can be 
obta ined if one first per forms all t ime integrals involved, and  estimates the 
spatial configurat ions for which the integrand is nonvanishing.  To  find a 
nonvanishing contr ibut ion f rom a single collision (m = m* = 1), say, a (12) 
collision, the center of particle 2 has to be in a spherical shell a round  the 
center of particle 1 with d iameter  o and  width propor t ional  to the small 
t ime t. Hence  C~b(12, t )~ t .  

Next  we compare  the collision sequences (12)(13)(12) (with m = 3, 
m* = 2) and  (12)(13)(23) (with m = m* = 3). The  center of particle 2 has to 
be in a spherical shell a round  the center of particle 1 with d iameter  ~ and  
width t for the first (12) collision to occur  in the small t ime t. Similarly, for 
a subsequent  (13) collision, the center of particle 3 has to be in a shell 
a round the center of particle 1 with d iameter  o and  width t if a (13) 
collision is to occur  in the small t ime t. Thus  the volume of the combined  
phase  spaces of the particles 2 and 3 for a (12)(13) sequence of collisions to 
occur  in a small t ime t will be  ~ t  2. If the third collision that  is to occur  
between the three particles 1, 2, 3 is again a (12) collision, no new condit ion 
is in t roduced because  2 has to be in the same shell a round  1 for this to 
occur  as before (cf. Fig. la). If, however,  the third collision were to occur  
between a different pair  of particles [for instance (23)], then an extra 
condit ion is in t roduced since now 3 has to be in a shell not  only a round  1 
but  also a round  2, so that  the volume of the combined  phase  spaces for a 
(23)(13)(12) sequence of collisions will be ~ t  3 for small t (cf. Fig. lb). The  
generalization of these phase  space arguments  to larger collision sequences 
(a l )  " " " (am) leads to the rule (4.3) in case mab = 0. 

We  next consider the case where m~b = 1, i.e., either a or b in Eq. (4.1) 
contains a T operator .  The  corresponding cluster functions in Eq. (4.2) can 
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Fig. 1. Phase space estimates of two collision sequences for small times t. (a) For a sequence 
(12)(13)(12) to occur the particles 2 and 3 need to be in a shell around particle 1 with diameter 

and thickness --t. (b) For a sequence (12)(13)(23) to occur particle 3 must be in addition 
located in a shell around particle 2. 

be ob ta ined  by  di f ferent ia t ing C a b ( a l a  2 . . . a rn  ; t )  with mab = 0 once with 
respect  to time. The  d o m i n a n t  shor t - t ime behav ior  of the derivative has only  
(m - 1) t ime convolut ions ,  and  is therefore  equal  to the d o m i n a n t  cont r ibu-  

tion of Cab(a2 . . .am; t  ) with mab = l and  a~ = a 1, or to Cab(aja2. . .  
am_~;t ) with m,b = 1 a n d  a b = a m. I t  b eh a ve s  the re fo re  as t m*-l ,  
as follows f rom Eq. (4.4). By taking a second der ivat ive  one shows that  
CaJ~(al,.. am; t )~ t  m* 2 behaves  d o m i n a n t l y  as C , b ( a 2 . . .  am_l ;  t) with 

mab = 2 and  a~ = a 1 and  a b = a m. This demons t ra tes  our  rule (4.4). 4 

5. INCOHERENT SCATTERING FUNCTION 

5.1. High-Frequency Tail of S(k,o~) 

The essential  dif ference in the shor t - t ime behav ior  of F(k , t )  for 
smooth  and  ha rd -co re  potent ia ls  manifes ts  itself in an interest ing fashion in 
the behav ior  of S(k,o~). Since F(k, t) for a ha rd-sphere  fluid is a nona na -  
lytic funct ion of t a r o u n d  the or ig in- - i . e . ,  F"(k,  t) has a cusp at  t = 0 - - w e  
expect  a tail, i.e., a nonexponen t i a l  behav ior  in the h igh- f requency  behav ior  
of S(k,~o), character is t ic  for a ha rd-sphere  fluid. This po in t  has been 
not iced  in Refs. 12-14. In  Refs. 12 and  13 it is impl ied  that  S(k,o~)~l/r  4 
at large w, a l though it is not  s ta ted  explicit ly.  Sears (~3) remarks  that  
S ( k , w ) ~ l / w  ~ as ~ 0 ~ o v  with 3 < a < 5, and  that  the four th  and  higher  
f requency momen t s  of the scat ter ing funct ion  are  infinite. 

The  h igh- f requency  behav io r  of S(k,  ~o) can be ob ta ined  f rom Eq. (1.4) 
by  successive par t ia l  integrat ions.  In  view of the sum rules, to be  discussed 

4The extensions of Lanford's bounds to the correlation functions of interest here, were 
obtained in close cooperation with Dr. H. van Beijeren. 



338 de Schepper, Ernst, and Cohen 

below, we first perform two partial integrations in Eq. (1.4), where we write 
cos o~t = - o~ - 2(d 2 cos ~ot/dt2). The result is 

S(k,  o~) = - fo~176 c~ ~ F"(k,  t) (5.1) ~03 2 

where we have used in addition that F(k, t) vanishes for large t. Two more 
partial integrations yield 

S(k ,~o)-  F '" (k ,O+ ) + foo ~176 --F'"'(k,t)c~ cot (5.2) 
97(.0 4 ,1"261 4 

By continuing this procedure we obtain, using Eq. (3.33) 

S(k ,o~)-  2k2 1 + O (  1 ) (5.3) 
~rd~Smt e w 4 -~  

This implies that odd powers t era- l in the short time behavior of F(k, t) 
manifest themselves as even powers 1/~02m in the high-frequency behavior of 
S(k, ~o). No such power law decay of S(k,  o~) is found for smooth potentials, 
since F(k, t) is then an analytic function of t around t = 0, in which only 
even powers of t occur. 

5.2. Adjusted Sum Rules 

The frequency moments of the scattering function for smooth poten- 
tials can be expressed in terms of static quantities 

;_+~ &o~o2"S(k, o~) = ( - ) 'F(2n)(k ,  0) (5.4) 

where F (n) (k, t) denotes the nth derivative of F(k, t) with respect to t. Since 
all frequency moments can therefore be expressed as equilibrium averages, 
they are expected to exist. 

For the hard-sphere fluid, however, only the zeroth and second mo- 
ment exist on account of the high-frequency tail (5.3). By multiplying Eqs. 
(1.4) and (5.1) with ~o ~  1 and ~0 2, respectively, integrating over c0, and 
using f~_ood*oe i~~ 2~r3(t), we obtain 

; ? : & o S ( k , ~ o )  = F(k ,O)= 1 

t "  +~ 2 k 2 
J-o~ &o~o S(k,O) = - F ' (k ,O)  - tim (5.5) 

which are the standard sum rules for smooth and hard-core potentials. 
However, multiplying Eq. (5.2) with ~0 4, and performing the ~0 integration 
yields 

;_+~dcolco4S(k,r lqr F ' " ( k , O +  ) ] =  F ' " ' ( k , O +  ) (5.6) 
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where the right derivatives F'"(k, 0 + ) and F'"'(k,O + ) can be read off 
from (3.33). Therefore, the short-time coefficient F'"'(k, 0) of a hard-sphere 
fluid can still be extracted from S(k, ~o) by means of an adjusted sum rule. 

5.3. Transition from Smooth to Hard-Core Potentials 

According to Eq. (5.3) the quantity o~4S(k, r approaches in a hard- 
sphere fluid a constant for high frequencies. We will now investigate to 
what extent this prediction of a hard-sphere fluid is applicable to a real 
fluid. 

The hard-sphere model is only a meaningful approximation for times t 
and frequencies ~ with 

t>ts=~s-I o r  ~0<~0 s (5.7) 

where t, is the average time a particle needs to transverse the steep part of 
the potential. An estimate for t s can be obtained from the short-time 
expansion of the velocity correlation function for smooth potentials, (13) i.e. 

t 2 t 4 
fimC(t) = 1 - c q - ~  + a2 (-~m)2 + - . .  (5.8) 

where 

2~rnfl fo~dr g(r)[r2V'(r)+ 2rV'(r)] O~ l ~ " ~ 

(5.9) 
lwnfl2fo~dr g(r){r2[V'(r)]2+ 2[ V'(r)] 2) + n2M, 

M~ is a term involving the static triplet distribution function. If the pair 
potential has a steep repulsive part with a range X,, then Sears (13) has 
shown that al~?ts -1 and a2~Xs 3 for small Xs, and that M 1 in a2 does not 
contribute to the coefficient of the leading term, Xs -3. Since the expansion 
(5.8) is only meaningful when successive terms are small, we obtain the 
following estimate by comparing the second and third term in (5.8), i.e., 

t i m ( -  0~1 (5.10) 
O~ 2 

An approximate evaluation of a~ and a 2 ( M  1 is neglected) for the repulsive 
part of a Lennard-Jones potential V(r) = c(o/r) ~ with u ~ 12, using g(r) 

X exp[ -  flV(r)], yields 

flmt 2, 6r(2 - l /u) ( f ie)  2/~ 
o2 (p2 + zp + 3)r(2 + 

With p = 12 and T* = kBT/E we have 

t, 0.18 

o(Bm)'/2 (r*)'/'2 

(5.11) 

(5.12) 
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For the mean free time t E in the hard-sphere fluid we have 

so that 

tE 1 1.4 
- ( 5 . 1 3 )  

o(tSm) 1/2 4x/~n* x n*x 

ts 1.3n*x 
m 

t E ( T * )  1/12 
(5.14) 

For the Lennard-Jones fluid at n* = r t o  3 = 0.85 and T* = 0.72 as in Ref. 6 
and with X-----4.5, (29) we find t s - - 5 t  e. Since at the liquid densities consid- 
ered, ~o e ~ 5%, and since Eq. (3.33) for F(k, t) and Eq. (5.3) for S(k,  to) are 
only valid for t < t E -- toi  1 and c0 > toE, respectively, we conclude from 
(5.7) that the hard-sphere high-frequency tail S(k, co)~l/to 4 cannot be 
observed in a Lennard-Jones-like liquid. 

However, at gas densities n*-----0.1 (where X-----1) and at normal tem- 
peratures, t E becomes large, so that t, ~ 0.1t e. Hence, there exists then a 
region, where both conditions, toe < to < % ~ 10toe can be met, and where 
a high-frequency tail in S(k, to) might in principle be observed. 

6. CUMULANTS AT SHORT T IMES 

6.1. Moments and Cumulants 

The cumulant expansion of the incoherent scattering function F(k, t) is 
defined through (2'13) 

logF(k, t )  = ~ ( - ) "k2"7 , ( t )  (6.1) 
n = l  

and the cumulants 7n(t) can be expressed directly in the moments of the 
displacement (2x~)0, generated by the expansion 

F(k , t )  = (e-ikax(t))o = 
( -  ik) ~ 

,=o n! 

= ~ (-ik)" f . . . f  
n = 0  

- -  

dT 1 dT 2 . . . d% 
O<~'rl<'r2< - . .  < % < t  

x (v , x ( , , ) v , x ( ,2 ) . . .  v,x(, .))  o (6.2) 

where we have used Eq. (1.2) and ordered the time integrals. From a 
comparison of Eqs. (6.1) and (6.2) one obtains the cumulants in terms of 
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the moments, e.g., 

1 ([~x(t)]2)0 
. 1 , ( 0  = -5f 

1 {([A (t)]450_ 3([zX,(t)]2)0} (6.3) 

Sears has discussed the short-time behavior of the cumulants both for 
smooth potentials and for hard-sphere systems. (13) For smooth potentials 
his results are 

i 2 /.4 Y l ( t ) = ~ t  + a, + blt 6+ O(t 8) 

72(0 = a2 t8 + O(tl~ (6.4) 

"}/3(/ ')  ~--- O(t '2) 

with explicit expressions for a 1, a2, and b l, which involve both triplet (b 1 
and a2) and pair distribution functions. For hard spheres he gives 

1 2 Itl 3 
.11(t) = t 3d- --mt E "t- O(l 4) 

.12(t) = 421tlS/5! + �9 �9 �9 (6.5) 

.13(0 - ~3ltlT/7! + " " " 

From the results of section 3 the O(t 4) term in 3,1(t) may also be written 
down directly using Eq. (3.34) and the relation 7[ (0  = C(t). However, 
Sears' results for .12 and "13 are only qualitative, since his series for ~2 and 43 
are formally given by an infinite sum of divergent integrals, of which only 
the first few terms are obtained. Here we will calculate exactly the coeffi- 
cients of the leading terms in the short time expansion of all cumulants "/n- 
We start from the nth moment for hard spheres with t > 0, 

(A~) o = n! f . . .  f d~,d~ 2 
0 < r l < r 2 <  ' ' .  < % < t  

X . . .  d%(exp( r ,L+)v ,xeXp[ ( r  2 -  r , )L+]v , x . . .  Vlx 

• exp [(% - %_,)L+ ]v,~)o (6.6) 

In these multitime correlation functions we have introduced pseudo Liou- 
ville operators, which are all L+ operators, since all time differences 
( r / -  r l- l)  are positive. (24'3~ 
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6.2. One-Collision Contributions 

In order to evaluate the cumulants, we start by calculating the 
moment-generating function F(k ,  t) in (6.2), since its logarithm (6.1) is the 
generating function for the cumulants. For short times exp(TL+)=  1 + 
rL+ + �9 �9 �9 and by keeping only the two most dominant terms in (6.6), we 
obtain 

n n t n + l  n 

(A~)  o = t (Vxx)O + - -n+l  l~=o ( v [ x L +  v ~ - t )  + O(tn+2) (6.7a) 

= t'f ~dO ((V~x) + n+lat ,=0 ~ (([v12 | 0Iv(x[ bs(12)  - 1 ] 

�9 v ~ - ' ) )  + O(t2)) (6.7b) 

To obtain the last equality we have used steps similar to those leading from 
(2.12) to (2.17) via (2.14) and introduced 

a = ( 1 / 2 ) n x  o a - ' a  a = (1 /2 ) (~rBm) ' / 2 / t e  (6.8) 

In addition we used that the 0 integrand is even, so that 0 ( - v 1 2 . 0 )  in the 
T+ (12) operator may be replaced by 1/2. The term ~ at ~ t / t e represents 
the linear term in an expansion of (A~) 0 in powers of t / t  e. In order to 
evaluate the generating function F(k ,  t) correct to linear order in at, we 
insert (6.7b) into (6.2), and call kt  = q, which leads to the result 

dO q ,t) = f  ~ ( ( e x p ( - i q . v ,  + c~/Iv,2-Ol[ba(12)- 1 ] } ) )  + O(t2).  F(7 
(6.9) 

To verify Eq. (6.9) expand the exponential function, and keep only terms 
linear in at (at fixed q), from which one recovers Eq. (6.7). 

In the further evaluation of Eq. (6.9) we change to a center of mass 
[V = (1/2)(v 1 + V2) ] and a relative velocity V = V l -  V2, which is further 
decomposed into Cartesian components (v a, Vb, V• i.e., 

v = vaO a + Vb~ b + V• (6.10) 

with orthonormal unit vectors (0 = q/Iql) 

~a = 0; e b = I0 - 0 ( O . O ) ] [ 1  - (0 ~ (6.11) 

The first term in the exponent of (6.9) becomes 

q . v l = q . V  + ( 1 / 2 ) q .  Ova + ( 1 / 2 ) q V b [ 1 - - ( O . O ) 2 1  t/2 (6.12) 

We observe that ba in (6.9) acts only on v~, with b~v a = - va. Hence, we can 
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carry out the integrations over V, %, and v• using 

( exp ( -  iq. V)) = exp [ -  (1/2)q2( V~ ) ] = exp( -  q2/4flm) 

(exp{-(1/2)iq%[1-(O.~)2] ' /z}  }=exp{-q2[1- (O.8)2] /4 f im}  

(6.13) 

This yields 

exp(q2/2flm)F(q/t,  0 = f (d~/~a)exp [( q �9 ~)2/4flm ] 

�9 (exp ( -  ( i /2)(q.  6)v a + ~tlVal [ b6 - 1]} }r 
+ O(t 2) (6.14) 

where the brackets denote the one-dimensional velocity average 

( . . . ) r = ( B ~  ~/2 +~ -27~ ) J-m dvaexp[-(1/2)fltxv2] "'" [/* = (1/2)m] 

(6.15) 

By expanding the exponential function inside the average in (6.14) we 
find 

where 

d ~  q ,t) = f -~a exp[ (q" 8)2/4flm ] exp( q2 /2Brn)F( 7 

�9 ( o = o  

O0 , F/ 

+ 

n=O \ 

(6.16) 

n 

Cn -- (n ~1- l)! l~=0 (]1)alVan-l(b~ l)l)a/}r (6.17) 

Clearly c o = 0, and since b~v~ = (-ca) t the label l in (6.17) must be odd, so 
that the label n must be even. Using (6.8) we obtain 

_ 2~n .(ivol2.+,)r_ -1 n~- 
C2n = (2n Jr 1)[ tE( flm) n F(n + 3/2) 

4 (2)n-1 
- 3te(fim)" (5/2)n_~(n-  1)! (6.18) 
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For later convenience we have introduced the Pochhammer symbol 

F(a + n) 
(a) - F(a) - a(a + 1)(a + 2 ) - . .  (a + n - 1) (6.19) 

The first sum in (6.16) equals e x p [ - ( q .  8)2/4fim], and with the notation 
z = (q.  8)2/4j~m we obtain 

o0 

exp( q2 /2fim)F( 7 -~a exp (z) ~ cn(-  fimz)n + O(t 2) 
n = l  

= 1+ ~ -~az'F' - j , ~  ;z + O(t  2) (6.20) 

where we have used Eq. (6.18), and the confluent hypergeometric func- 
tion (31) 

ig,(a;  b; z) = e x p ( z ) f  l(b - a; b; - z) = ~,, (a), z" n=O (b) .  ni (6.21) 

Integrating the hypergeometric series term by term, using 

f dS zn 
f~d 

we find 

exp(q2/2flm)F( q , t )  

+ 1_ 1 (3/2),, q2 

d [ ( d +  2)/2]~ 4tim 

= 1 + q2t 
3 dfi mtE 

(6.22) 

where 2F2 is a hypergeometric series (32) 

k (a)"(b)n zn 2F2(a,b; c,d; z) = ,=0 (c) , (d) ,  n! (6.24) 

The generating function for the cumulants is according to (6.1) 

logF  7 2Bin 3dBmte 2F2 2 ' 2  '2  2 '4Bin 
+ O(t 2) 

(6.25) 

By replacing q = kt and identifying coefficients we find for 7~(t) the result 

1 3 .5  d + 2  . q2 ) 
X 2F2 2 ' 2 ' 2 ' 2 ' 4Bm + O(t2) 

(6.23) 
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in Eq. (6.5) and for y.(t)  with n/> 2 

(-)~t2"+~(1/2).-1(3/2)~-, 1 [1 + O(t)]  
~n(t) = 3 d ( 5 / ~ n ~ - 2 ) ~ ' ~ n - ' ~  l i , 2  2n-I tE (~m)  n 

(6.26a) 

or 

(--)nt2n+'n(1/2)~-,(3/2)n -,  1 [1 + O(t)]  (6.26b) 
yn(t) = (2n + 1) ! (d /2) ._ ,  t~(flm) ~ 

This is our final result for the dominant term in the short-time expansion of 
the cumulant yn(t). For n = 2 and n = 3 the coefficients (2 and ~3 in Eq. 
(6.5) follow from (6.26). From the generating function (6.23) we can in 
principle also obtain the moments (A2xn(t))0, correct up to linear terms in 
t / t  e. The result is a linear combination of ~,k's with k = 1,2 . . . . .  n, which 
does not simplify any further and will not be written down explicitly. 

6.3. Contributions from More Than One Collision 

The calculation of the first correction to the leading term (6.26), which 
is of relative order t, is much more laborious. We will only outline the 
procedure of how to evaluate this correction in principle. The contributions 
are similar to Aa(t ) and Ae(t ) in Section 3, and involve the triplet correla- 
tion function and two or three T operators. 

Let us illustrate this for the O(t 6) term in y2(t), i.e., 

5 

+ O(t 6) (6.27) 

with t > 0. We follow the Taylor expansion method of Section 2 and have 
to calculate the sixth derivative of y2(t). As Yl(t) is already known to the 
desired accuracy, we calculate the sixth derivative of (A4)0/4!, as given in 
(6.6), and obtain after some calculation the result 

( d ) 6 1  4 (v2xL+e rE+ L+ v 50 t)x) 0 + d-t 4.1 (Ax)~ = (vxL+ etL+L+ 3 

+ (v3L+ erE+L+ vx) o + (vxL+ V2xe'L+L+ Vx) o 

+ (vxL + V2xe'C+L. Vx) o + (v2L+ V2xetL*L. vx) o 

+ O(t) (6.28) 
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where v~ is the ~ component of the velocity of particle 1. At t = 0 none of 
these terms exist. However, they approach a finite limit as t-~ 0 + .  Their 
explicit evaluation is rather similar to that of (vxL + erL+v~,)o, treated in 
Section 3, but will not be carried out here. 

7. COMPARISON WITH ENSKOG'S THEORY AND MOLECULAR DY- 
NAMICS 

7.1. Enskog's One-Collision Contributions 

The functions F(k, t) and C(t), as well as the cumulants ~,n(t) may also 
be calculated by means of the Enskog theory which approximately de- 
scribes a hard-sphere fluid. We want to compare the exact results found 
here with the predictions of Enskog's theory. If we restrict ourselves to 
t > 0 [see Eq. (1.9)], then the Enskog theory is obtained if the N-particle 
operator L+ in the correlation functions (1.13) is replaced by the one- 
particle operator L e, acting on functions of (v 1, rl), (11,25) i.e., 

0 L E = v 1 �9 ~ + A e (7.1) 

= xAs. = Xnod-' f dv2,o(V2) f ,2. <odOlVl2 �9  l[b (12) - l ]  (7.2a) 

= n f  dv2f dr2~b0(v2)g (r12) T+ (12) (7.2b) 

and the N-particle average ( . . . ) 0  is replaced by the velocity average 
( �9 �9 �9 ), defined in (2.15). This yields for the intermediate scattering func- 
tion F(k, t) and the velocity correlation function C(t), 

Fe(k, t) = (exp(ik �9 rl) exp( tL~)exp(-  ik .  rl) ) (7.3) 

CE(t ) = (Vlxexp(tLe)vlx) = (vlxexp(tA~)vlx) (7.4) 

and an analogous expression for (A:~)0 of (6.6) with the same replacements, 
One verifies directly that the exact results (2.9-2.12) for F(k,t), 

yielding Eq. (2.19) up to O(t 3) included, coincide with the Enskog predic- 
tion. This is true since F'"e~rk, O)=-k2(v]xA~vl~),  which in turn is 
identical to Eq. (2.14) on account of (7.2b). For the velocity correlation 
function one finds from (2.7), that the short-time prediction of Enskog's 
theory is exact to O(t) included. Similarly, the dominant term (6.26) for the 
cumulant 7n(t) at short times is correctly given by Enskog's theory, since by 
replacing (v(xL + v~-l)o by (v(xLev~ -l) in Eq. (6.7a), one obtains also 
(6.7b). We may state the general conclusion that  the Enskog theory for 
short times gives exact values for the first correction terms (proportional to 
t i  l) to the ideal gas behavior, for all quantities considered here. 
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7.2. Enskog's Coefficient of t 2 in C ( t )  

For a comparison of the contributions of more than one collision we 
consider only the velocity correlation function, which covers also F(k, t) [cf. 
(3.33) and (3.34)]. 

The exact result (3.34) reads 

21tl +c( t)2+ O(t 3) (7 .5)  fimC( t) -- 1 - -~E -~E 

with 

c = ~-ff ( W(x)g3(x)/x2)~ng (7.6) 

Enskog's prediction c E for the coefficient e in (7.5) follows directly from 
(7.4) and (7.2b), i.e., 

c e = (1/2)t2flm ( v,x (a~)2vlx)  

=(1/2) t2 f lmnfdr l2 fdr l3  

�9 g ( r , 2 ) g ( r , 3 ) ( ( ( [ T _ ( 1 2 ) v , . d ] T + ( 1 3 ) v , . l ? ) ) )  (7.7) 
In order to evaluate this expression we compare (7.7) with (3.13) and 
observe that - a . ( 0 ) / k  2 is transformed into 2Ce/flmt 2 upon the replace- 
ment of g3(x) by X 2. Therefore Eq. (3.29) yields 

c E ~- ~ < mE(X))ang (7.8) 

It may be evaluated explicitly, using (3.18) and (3.31) to yield 

Ce= ~ s163 

_ 4F(d /2 )  s  1 1 .3  x 2)  
- d #  r - ~  ---1)/2) - 2 ' -  2 '  ~ ; 4  

(7.9) 

After the substitution x 2 -- y the last integral can be obtained from Ref. 32, 
and gives 

2 F (  1 1 . d + 2 .  1 )  (7.10) 

We remark that 2F1 is close to 1 (within 4%) for all values of d. Equation 
(7.10) reduces for d = 3 to 

3v~- = 0.2278296 ( d =  3) (7.11) cE =  ~8 + 32 
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This result is obtained by evaluating (7.8) directly for d - - 3  in terms of 
elementary functions. Although one can express (7.10) for d = 2 in terms of 
complete elliptic integrals, we may also compute c E directly from the first 
few terms of the fast converging hypergeometric series (7.10) to yield 

c E = 0.515 796 0 (d = 2) (7.12) 

7.3. Single Overlap and Recollision Contributions 

By comparing (7.6) and (7.8) we see that the exact coefficient c 
contains c E plus two additional contributions, i.e., 

C = C E -'[- C S "['- C R 

with 

(7.13) 

Cs = ~ - -  We(x) - 1 (7.14) 
ang 

( / CR = - ~  W R ( X ) - - ~  ang 

We refer to c s as the single overlap contribution, since (for low densities) 
[g3(x)/x 2 - 1] is nonvanishing (and equal to - 1) only for 1/2 < x < 1 or 
0 < 0 < ~r/3 with x = cos0 [see (3.14)], i.e., for configurations in which one 
pair of spheres is overlapping. The coefficient c R is the recollision contribu- 
tion, the integrand of which is only nonvanishing for - 1  < x < 0 or 
(1/2)~r < 0 < ~r, due to the presence of O(-x)  in (3.32). We want to assess 
the relative importance of the terms in (7.13). Consider first low densities. 
The recollision term can be obtained directly from (7.15) and (3.22), and 
yields (32) 

- 8 F ( d / 2 )  s  ( 1 1 " 7 " 1 2  ) 2 ' 2  ' 2 '  2 c,  = 15~-~-dF-~,, ~ 1)/2) - x 2 ) ( d - 3 ) / 2 x 4 2 F l  

_ 4 (1  1 5 . 7  d + 4 .  1 )  (7.16) 
5d2(d+2) 3F2 2 ' 2 ' 2  ' 2 ' T ' 4  

The hypergeometric function is again close to 1 (within 2%) for all values of 
d, and we find 

c n = - 0 . 0 1 8  02 ( d = 3 )  

- -0.050 79 (d = 2) (7.17) 

At low densities the single overlap term (7.14) reduces to 

- 2 ,~-F(d/2)  
Cs = d--F(--~ 1-~)f l l ' /2  dx(1 -x2)(a-3)/2WE(x) (7.18) 
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We have not been able to evaluate (7.18) any further for general d, but for 
d = 3 it can be evaluated analytically in terms of elementary functions, and 
for d -- 2 in terms of incomplete elliptic integrals. The numerical values are 

c s = 0.028 91 5 (d = 3) 
(7.19) 

= 0.054 31 (d = 2) 

which can be obtained most easily by integration of the first few terms of 
the fast converging hypergeometric series. We have also obtained the first 
density corrections to the previous result using the density expansion (33) of 
g3(x)  and X with the result 

c = 0.238 729 - 0.010 60-~- + O ( n  2) (d = 3) 
(7.20) 

1 2 "  

c = 0 .519315-  0.005 858~-~ + O(n 2) ( d =  2) 

where V 0 is the close-packed volume, and 

V o _ I ( 1 / 2 ) ~ / 2 n o 3  (d = 3) 
(7.21) 

v 2 ( a = 2 )  

The results (7.20) indicate that c depends weakly on the density and is 
dominated by the Enskog contribution given in (7.11) and (7.12). 

7.4. Mo lecu la r  Dynamics  Result  

For three dimensions and high fluid densities the triplet correlation 
function g3(x) with x = cos0 has been studied in the literature/34-36) For 
angles 0 with 2 ~ / 3  < 0 ~ v one finds g3(x)~-~ X 2, while for angles close to 
0 = v / 3  the result is g 3 ( x ) ~  X 3. The factor X varies monotonically from 
X = 1 to X ~ 5 for the typical liquid density V o / V  = 0.625. 

Owing to this behavior of g3(x) and owing to the form of WR (x), as 
given in Fig. 2, we find c R in (7.13) to be almost independent of the density. 
Therefore the ring correction c R is small compared to c e for all densities. 

We find a somewhat stronger density dependence for c s. This is due to 
the form of W e ( x  ) (cf. Fig. 2) and the fact that g3(x) = X 3 for 0 ~ ~r/3. 

In Fig. 3 Ac = c -- c E is given as function of the density for d = 3. The 
result shows that the correction terms in (7.13) are small compared to c e for 
all densities. 

The theoretical prediction agrees reasonably well with experimental 
values for Ac, obtained from molecular dynamics experiments for C ( t )  by 
Wood and Erpenbeck. (3v) 

It follows furthermore from Fig. 3 that for short times and low and 
intermediate densities the function C ( t ) -  CE(t  ) will be positive while at 
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Fig. 2. 
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The weight functions WE(x ) and WR(x ) as functions of x = cos0. WE(x) appears in 
Eq. (7.14) and WR(x ) in Eq, (7.15). 

012 

00(  

004 

0 

- .Q04 

- 008 

~,C 

~ l  _ % / v -----~m... 

' 11 ' .'2 ' .'3 ~' :4 ' ' ~ ~ ' . 7 '  - 

Fig. 3. The deviation Ac = c - c E of the exact coefficient c appearing in Eq. (7.5) from its 
corresponding Enskog value c e = 0,2278 as a function of reduced density for a three- 
dimensional fluid of hard spheres. V 0 is the close-packed volume and Vo/V = na3/~/2. The 
curve represents the result of Eq, (7.6). The black circles are extracted from molecular 
dynamics c~ata for C(t) by Wood and Erpenbeck. (37) 
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high densities it will be negative. This effect has been observed in molecular 
dynamics experiments by Alder et  al. (38) and might be related to the 
so-called "cage" effect, i.e., the occurrence of negative values of C ( t )  at 
high densities and t ~ t e .  

8. D I S C U S S I O N  

1. The results for the short-time expansion obtained in this paper 
apply to hard-sphere fluids and are valid for all densities, all values of k, 
and dimensionalities d/> 2. We have calculated explicitly the coefficients of 
t n in the short-time expansion of the incoherent scattering function F ( k ,  t)  

(n = 0, 1,2,3,4), the closely related coefficients [see Eq. (2.7)] for the 
velocity correlation function C ( t )  (n = 0, 1, 2), where the last coefficient in 
each case is a new result, as well as the explicit form of the dominant 
short-time behavior of all cumulants ~,n(t) of the displacement of a tagged 
hard sphere. 

(a) The coefficients (3.33) for F ( k ,  t)  up to It] 3, and the corresponding 
coefficients (3.34) for C ( t )  up to It] agree with results given in the litera- 
ture.(10, 11, J4, 15) The coefficient of t 2 in the expansion (3.34) for C ( t )  differs 
from an early result derived by R6sibois and Lebowitz in Refs. 18 and 19, 
where the ring events were overlooked (see ld). In a later publication (21) 
these authors agree with the expression (3.34) for C ( t )  which has been 
published before in Ref. 22. 

(b) The most conspicuous difference in the short-time expansions of 
F ( k , t ) ,  C ( t ) ,  and ~,n(t) between hard-core and smooth interaction poten- 
tials is the appearance of odd powers of t for hard-sphere fluids, while for 
soft potentials only even powers of t are present. Thus for hard spheres 
f l m C ( t )  = 1 - 21tl/dte + c ( t / t e )  2 + . �9 �9 in (7.5), while for smooth poten- 
tials f l m C ( t )  = 1 - a l t 2 / f i m  + a J 4 / ( f l m ) 2  + �9 �9 �9 in (5.8). The coefficient 
c [Eqs. (7.8), (7.13-7.15)] involves the static triplet distribution function of 
three spheres in contact, g3(x), and the dynamical weight functions W E ( x  ) 

and W R (x). The coefficient a~ for smooth potentials contains the static pair 
distribution function and derivatives of the pair potential, a n d  a 2 contains 
in addition the triplet function. Both coefficients diverge if the smooth 
potential approaches the hard-core potential (see Refs. 12 and 13 and 
Section 5.3). The hard-sphere results can be considered as a resummation 
of the most divergent terms in the hard-core limit of the corresponding 
expansions for smooth potentials, and Sears (~3) has given the first few 
(most divergent) terms which have to be resummed. A similar comparison 
can be made for the hard-sphere expansion (3.33) for F ( k ,  t)  with the 
corresponding one for smooth potentials. (13~ 

(c) Apart from the first cumulant or mean square displacement ~q(t) 
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= (1/2)(k~)o = fo' dt' fo ~' dt" C(t"), which is covered by the previous discus- 
sion, the higher cumulants 7n(t) (n > 2) for smooth potentials are 7,(t)  
= ~/nt4n[1 + O(t2)], where 72 has been calculated by Sears. (13) For a hard- 
sphere fluid the dominant  short-time behavior is 7,(t)=~,tt]2~+l / 
(2n + 1)!, with ~, given in (6.26). 

(d) Our method for obtaining these expansions resembles closely those 
for smooth potentials [see Eq. (2.1)]. However, for hard spheres the matrix 
elements (aL+ b)o do not exist in general, e.g., if a and b both depend on 
positions and velocities of the N particles, (aL+ b)o exists, but (aL  2 b)o 
does not. The reason is that L2+ contains terms of the form T+ (12)T+ (12), 
which contains products of 8 functions with the same argument (r12 - 08). 
However, d2Cab(t)/dt 2 = (aL+ etL+L+ b)o does exist, and has a finite limit 
for t---> 0 + .  In particular, we find the unexpected result that the so-called 
recollision contribution, i.e., (aT+ (12)f~dr e~L~ (13) e (~-~)c~ (12)b)o, 
which looks formally of O(t), has a finite nonvanishing limit as t--~ 0 + ,  as is 
shown in Appendix B. For general collision sequences we have given 
estimates of the short-time behavior in Section 4. 

2(a) In order to discuss the region of times for which the short-time 
expansions are meaningful, we consider the time scales t E, t~, and tk: 
t e = to~ X is the mean free time, and t 0, given in (2.18), is its low-density 
Boltzmann limit; t o = o(flm) 1/2 and t k = ( f lm) l /2 /k  are the average times 
needed to traverse the diameter o and the inverse wave vector k-~, 
respectively. Next, we write (3.33) as 

1 t t ]2lt[ 

+ '  ' + ~   (v)4 ,2  ,)2 

where c is given in (7.6). It is clear that the short-time expansion (8.1) is 
only valid for times t, such that 

I tl ~< tE (8.2) 

However, there is an additional restriction, used in the derivation of c [see 
Appendix B, discussion preceding Eq. (B4)], i.e., (v~t  must be small 
compared to the range o of the static triplet distribution function, or 

[tl (8.3) 
For low densities t o << t e ~ t 0, while for liquid densities t e << t o. For typical 
neutron-scattering experiments (1/20)to ~< t k ~< t~. The time scale t k is ab- 
sent in the expansions of C(t) and 3',(t), since k = 0, so that t k ~  m. 
(Compare also the discussion in Section 5.3, on the average time t, needed 
to traverse the steep part of a strongly repulsive potential.) 
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(b) We note that the restriction t<~t~ on (8.1) can be overcome by 
summing all terms in (8.1) of the form ( t / t k )n ( t / tE )  m over n, for given 
(fixed) values of m. In fact this was done in Section 6.2 for m = 0 and 
m = 1, where the result (6.23) can be written as (with kt = ( f lm) l /2 t / tk )  

F ( k , t ) = e x p  ~ ( ~ )  1 + ~ -  e 

The leading term represents the ideal gas contribution, while h(s) arises 
from one-collision events and is for all s -- t / t  k given by 

1 ( l  3 . 5  d + 2 . s  z )  (8.5) 
h(s)  = s22F2 2 ' 2  ' 2 '  2 ' 4 

Hence (8.4) holds for all t <~ t e and t ~ t o. 
(c) The restriction (8.3) on (8.1) has a curious consequence on the 

short-time expansions in the so-called Grad limit (i.e., o ~ 0, n ~ ~ ,  such 
that t o or no d-x are finite); namely, taking the Grad limit and short-time 
limit in different orders yields different results. Van Beijeren et al. (27) have 
shown rigorously that C(t)  approaches in the Grad limit the prediction 
CB(t ) from the Boltzmann equation, with flmCB(t ) = (vxeA~tvx~ and A~ 
defined by (7.2a) (and X = 1.). 

By performing now a short time expansion, one finds f lmCs( t  ) = 1 - 
(2/3)(I t l / to)  + @( t / t o )  2, where the results of Section 7.2 have been used. 

However, taking the Grad limit after the short-time expansion has 
been performed [see (7.5)], one obtains a different result, namely, c E 
replaced by c E + Ac, where Ac = c s + c R is given in the Grad limit by the 
low-density results (7.16) and (7.18). The reason for this difference is, of 
course, that the short-time expansion (7.5) is not valid in the Grad limit, 
since t o ~ O. 

3. Interesting results are also the high-frequency tail ~l//co 4 in Eq. 
(5.3) of the incoherent scattering function S(k ,  co) for the hard-sphere fluid 
in Section 5, and the adjusted sum rule (5.6) for the fourth frequency 
moment of S(k ,  co). In Section 5.3 an estimate of the frequency range is 
given where the hard-sphere tail ~ 1/co 4 might be expected in noble gases. 
It is argued that this frequency tail is not expected in noble gases at liquid 
densities, but only at lower densities. 

4. In Section 7 we have compared the exact results with their analo- 
gues in Enskog's theory of a hard-sphere fluid. We found that the predic- 
tions from Enskog's theory for F(k , t ) ,  C(t), and all ~,n(t) give the first 
correction (proportional to t~ 1) to the ideal gas behavior exactly. A 
comparison of the next correction term (proportional to t~ 2) for C(t)  in 
three dimensions revealed that the Enskog prediction is amazingly close to 
the exact result for this term for all densities (cf. Fig. 3). 

5. The methods used in this paper can be applied straightforwardly to 
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the calculations of other time correlation functions for the hard-sphere 
fluid, such as the coherent scattering function and the current-current  
correlation functions entering in the Green-Kubo  formulas. 

A P P E N D I X  A: C A L C U L A T I O N  O F  Vl(x) A N D  V2(x) 

In Eq. (3.16) we introduced 

VI(81 �9 62) = ( tim)2( ( (O(v12 �9 81)0(u ~ 82)(u ~ 81)2(v31 ~ 2) ) ) ( a l )  

which should be evaluated for two-dimensional velocity vectors vi (i = 1,2, 
3), as explained below Eq. (3.15). The velocity averages ( ( ( . . . ) ) )  are 
defined in (2.15). We further change to dimensionless variables [(1/2) 
flm]l/2vi ~ vi, and introduce new integration variables 

V = (1/3)(vl  + v 2 + v3) 

u = v 1 2  = v j  - v 2 ( A 2 )  

W ~-- V31 ----- V 3 - -  V 1 

2 2 _ _  for which the Jacobian equals 1. Since v 2 + v 2 + v 3 3V 2 + (2/3)(u 2 + 
w 2 + u .  w) we can write (A1) as 

V 1 ( 8 1 , 8 2  ) = 4 fdufdwexp[-(2/3)(u 2 + w 2 + u . w ) ]  
3 ~  -2 

• O(u. 8,)O(w �9 82)(u- 81)2(w �9 82) 

_ 2 7  ~ ~ +~ +~ 
4~ "2 s duls  dwlf_o ~ du2f_o ~ dw2u2w~e a,, (A3) 

where we have performed the V integration. The vectors u and w are 
rescaled such that the factor 2 /3  in the exponent is replaced by 1; and 
(ul,u2) = u and (wl,w2)= w are Cartesian components along the axes 

A A A 
(81 , 81 • and (o 2, 02• ), respectively, where oi• is a unit vector orthogonal to 
8i, 81 �9 82 = cos0, and the exponent ~1 has the form 

(I) 1 = U 2 - [ -  W2 + U * W  

(A4) 
= u~ + w~ + u 2 + w~ + (ulw I + UzW2)COSO + (w2u I - UzWl)sinO 

The integrations over u 2 and w 2 are Gaussian integrals which can be 
calculated most conveniently from the formula 

s f_+oa~176 
(detA)l/~ exp ~ i,]=1 



The Incoherent Scattering Function and Related Correlation Functions 355 

Here A -- (A~} is a positive definite matrix; A - l =  (A~ I} is the inverse 
matrix, and detA its determinant. It can be derived easily by a transforma- 
tion to principal axes. The resulting form for (A3) is 

V,(cos0) = (16/~r)I 1 - (1/4)cos20]5/2S(cosO) (A6) 

with 

S(x) =~o~dU~o~dWu2w2e -u2-~2-xuw (A7) 

In going from (A3) to (A6-A7) the variables u = aul, and w = aw I are 
rescaled with 

c~2- 3 - 3 ( 1 -  1 ) ' 
4 det A 4 4 c~ 0 (A8) 

Finally, the integral in (A7) can be performed by changing to polar 
coordinates, and we find 

S ( x ) = g  1 -  x 2 l + ~ x  2 cos-  -2 - 3 2 x  1 -  x 2 1/2 (19)  

Combination of (A9) and (A6) yields expression (3.16) for Vl(x ), i.e., 

Vl(X)= 2 [ ( 1 +  1 ) , x ( 1 ) ] "~X 2 COS- -- -- 3 1/2 
- 2 2 x  1 -  x 2 ( A 1 0 a )  

1 2 4X ( 1 1 . 3 .  X 2 ) 
= 1 +  ~-x ~r 2FI 2 '  2 ' 2 '  4 ( a l 0 b )  

\ / 

as given in the body of the paper. Here 2F~ is Gauss hypergeometric 
function (3 ~) defined as 

oc 
2Fl(a,b;c;x) = ~ (a),(b), x" 

,=0 (c),  n! (A l l )  

and (a), = a(a + 1) �9 �9 �9 (a + n - 1) is a Pochhammer symbol. The expres- 
sion (A10b) in terms of the Gauss hypergeometric function is very helpful 
in performing later integrations over x. It can be derived most conveniently 
by dividing S(x) in (A7) into an even part Se(x ) and an odd part So(x ) in 
x. The even part of (A7) yields directly [1 + (1 /2)x  2] in (A10b). In So(x ) we 
expand the odd part of e-UWX in powers of x. A term by term integration 
yields 

x ( 3 . X  2 ) So(x ) = ~ 2Fl 2 , 2 ; ~  ,-~- 

(112) - 5 /2  . 

_ x( t t 1----~-  2F1 - ' - 2 ' 2 '  4 

where the last equality is a linear transformation formula for 2F~. (3~ 
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Next, we consider V2(X) ,  defined in (3.24): 

V 2 ( 0 1 "  8 2 ) =  ( tim)2( ( (0(v12' o 1 ) O ( - - V 1 ,  2 " ~ l ) ( V l 2  ~ O1)2(V1,2 " 01)  2 )  ) ) 

(A13) 

with vv2=vl2+O2(82 .v31 )-=u' .  It is only needed for 8 1 . 8 2 < 0 .  The 
calculation closely parallels that of (A1). We introduce again (u I , u2) = u as 
below (A3), but (w 1 , w2) are defined differently, i.e., 

W l = --U' 'A 0 l  = U "  0 t - -  (O 1 �9 0 2 ) ( 0 2  �9 W) ( 1 1 4 )  

W 2 = W " O2~ 

so that dw = dw I dw2/181 �9 621. Hence (112) becomes 

fo foo f_ du2f: dw u -% (A15) 27 du 1 dw 1 ~w2e 
V2(81 "%) - 4,2101 . 021 

where 

(I) 2 = I12 + W 2 "[- U ~ W = U 2 + W 2 "l- U2W 2 c O S 0  

(wl + ul) 2 
"t'- U l W  1 "t" b/2(W 1 n t" u 0 t a n 0 -  u l % s i n O  (A16) 

cos 2 0 

In deriving the last expression we need the inverse transformation of (A14). 
The (UzW2) integrations are again Gaussian, which may be performed using 
(A5), and the result is 

V2(cos0 ) = (16/~r)lcos0[5[1 - ( t / 4 ) c o s 2 0 ] U 2 S ( 2  - cos20) (A17) 

where S ( x )  is defined in (A7). Finally, we arrive at Eq. (3.26) in the body of 
the paper, which is only needed for x < 0, 

Vz(x ) -- Vl(2 - x 2) 

x 3x (2  ( x 2 )  '/2 
_ 2 (6 - 4x 2 + x4)sin 1 2 + - -  X 2) 1 -- (Al8a) 

q7 '/7" - "4-  

( 1 1 " 7 " x 2  ) 
- x 5 2 F l - f f , ~ , ~ , ~ -  

where we have used 

c o s - i l l  - ( 1 / 2 ) x  23 sin-l(x/2) 
2[xf x 

(AlSb) 

(A19) 

Expression (A18b) can be derived from (A10b) by using linear and quad- 
ratic transformation formulas for 2Fl.(31) 
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APPENDIX B: RECOLLISION DYNAMICS 

Consider  the recoilision operator,  occurring in Eq. (3.21) for short 
times (t > 0), i.e., 

R ( t )  = s  T (12)c~(vl)exp(ik.  r , ) l e x p [  ( t -  t , )L0]  T+ (13) 

• e x p ( t l L o ) T  + (12) f i ( v l ) e x p ( -  ik .  r,) (B1) 

where c~(v) and fl(v) are arbitrary functions of the velocities. The operator  
T+ (13) contains the factor [ba2(13 ) - 1], the first term of which changes the 
directions of the vectors Vl, v3, the second term leaves the directions 
unchanged and vanishes on account  of Eq. (3.20). Hence,  we find from 
(1.11) 

R(I) = 03d-3s tat l f d81 f d82 f d83~(r12 - o8,)8(r ,3 + v , 3 ( / -  t , )  - o82) 

�9 6(r~2 + Vl,2t , + vl2(t -- tl) - 083)0(v,2 �9 8,)v12 �9 a, 

�9 Ao(a , , v , )O( - , , , .  82)1v,," 8d0(-Vx,2" 8,)1v,,2" 

�9 e x p [ -  i k . v v t -  i k .  V l ( t -  tl) ] (B2) 

where we have used the relation e'C~ = r i + vit  , and int roduced 

u ~" u - -  u 

v,, = be2(13)v , = v, + 82(82 �9 v3,) (B3) 

A~(8,,v,) -- [ba~(12 ) - 1 ]O~(Vl) 

and similarly for  A/~. Not ice  that the first and third 0 functions in (B2) 
automatical ly guarantee that 0 ( -Vl3  �9 82) = 1. The first two delta functions 
in (B2) require that  the triplet funct ion in (3.21), i.e., 

g ( r , , r  I - r12,r I - r13 ) = g(r l ,  q - 081,r  1 - 082 --I- Vl3(t - -  tl) ) 

is only needed for configurations Irj31 = 1082 - vl3(t - tl) ] > o, where it is a 
smoo th  function of the argument  r13. Hence,  for short times t (t > t I > 0) 
we may drop v~3(t - 1 1 )  in the argument  of the triplet funct ion as well as in 
the argument  of the second 8 funct ion in (B2). This implies the neglect of 
terms O(t),  and so does the replacement  exp ( ik ,  vvt - ik .  vl(t - tl) ) by 1. 
Owing to these replacements the short-t ime expansion is valid only for 
t < t o and t < t k where t o = ( t9m)1/2o and t k = ( 1 9 m ) l / 2 / k  are the average 
times needed to traverse the diameter  o and the inverse wave vector  k, 
respectively. Our  next step is to perform the integrations over t~ and 83, i.e., 
we have to calculate an integral of the type 

1 s  t f ^ ^ A I = o a -  dt ,  d 8 3 8 [ o o ( t , )  - o o 3 1 f ( o 3 )  (B4) 
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with 

t , ( t , )  = 8, + v , 2 t , / , ,  + v,2(t - t , ) / o  (BS) 

The d-dimensional delta function 8 (d) can be written as 

8(d) [P( t l )  -- 83] : 6(1)([p(tl)[- 1)6(d-1)[83 -- t3(tl) ] (B6) 

where 6 (l) ensures that t3(tm) is a unit vector. For small t (t > tl) the 
argument of 6(1) becomes 

IO(tl) I - I = __I [81 .vv2t,  + 81 . v , 2 ( t _  t , ) ]  + O(t 2) (B7) 
o 

By virtue of (B3) and (B5) we have to dominant order for small t 

O 
(~(1)( l lo( t l )  I -- I )  = 1(81 ~ 82)(82 . V13) I 

(~(d l ) [ 83  -- ~ ( t l ) ]  : (~(d-1)(83 -- 81 ) 

so that (B4) becomes 

81 "vt2t ] 
- -  ^ ~ -  - , " Z ' -  - 

a (~) tl (0.~.o~)(o~.Vl~) 

(B8) 

[ A tl l 1 0 0.1 ~ VI2 0 L ~ I ' ~  -Vl'2 
I = [81. 821 ]82" Vl3l (81 ~ 82)(82 -v13 ) (8,  7 ~ 7 X ~ 2  �9 v13 ) f (81)  

(B9) 

The two 0 functions come from the t, integration, where it is required that 
0 < t I = at < t and where we have used (B3). Since (B9) has to be used 
inside (B2), the conditions Vl2.81 > 0 and vv2.81 < 0 guarantee that (B9) 
reduces to 

0(_7";A O, 0"2) 

Using all the above information in (B2) we find for the recollision operator 

0( 8 , .  82) 
R(t)  = 0"~d-~fd< f d < 8 ( r , ~  - oS,),S(,',~ - 08:) 

181" 821 

�9 0(u176 81)V,2 ~ 81ma(8, ,V,)0(--Vy2~ 8,)1u 2" 8,]Afl(81,u 

+ O(t) (Bl l )  

or, by using (B3), we find the result given in Eq. (3.22), i.e., 

0( 8,-  82) 
R( , )  = ,,~"- ~ f d <  f dS~ 8(,-,~ - 0.e,),~(,-,, - ,,e~) 18," 821 

~165 �9 81)u ~ - 1]a(vl))b~2(13)O(-v,2.81)1vi2" 8,t 

�9 {[ba,(12 ) - 1] fl(Vl) } "a t- oc t  ) (B12) 
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